

BASIC STRUCTURE OF COMPUTERS
UNIT-I
Basic Structure of Computer: Computer Types, Functional Units, Basic operational Concepts, Bus Structure, Software, Performance, Multiprocessors and Multicomputer.

Machine Instructions and Programs: Numbers, Arithmetic Operations and Characters, Memory Operations, Instructions and Instruction Sequencing, Addressing Modes, Basic Input/output Operations, Stacks and Queues, Subroutines, Additional Instructions.

Computer:
	Computer is an electronic device that performs a set of instructions to store the data, retrieve data and process data. In this computer to calculate mathematical and logical operations are at the speed billions of seconds faster than human beings.
	The term ‘computer’ is a Latin word, this means to calculate or programmable machine.

Computer Organization:
· Computer Architecture and organization is the study of internal working, structuring and implementation of a computer system.
· Computer architecture is concerned with the structure and behavior of the computer
· Computer organization is the high level aspects of a design such as
· Memory system
· Bus structure
· Design of the CPU
· It refers to the operational units and their inter connections that realized the architectural specifications.

COMPUTER TYPES
A computer can be defined as a fast electronic calculating machine that accepts the (data) digitized input information process it as per the list of internally stored instructions and produces the resulting information. List of instructions are called programs & internal storage is called computer memory.
The different types of computers are exist difference widely in size, cost and computational power.
1. Micro Computers: Micro computers are smaller computer. They contain only one CPU. One feature of a Micro computer is that the CPU is usually a single integrated circuit called a microprocessor. Micro computer is the integration of microprocessor and supporting memory and I/O device. The word length depends on 8 bits to 32 bits.

2. Mini Computers: Mini computers are the up version of the micro computers with the moderate speed and storage capacity. These are designed to smaller data words.
3. Personal computers: - This is the most common type found in homes, schools, Business offices etc., It is the most common type of desk top computers with processing and storage units along with various input and output devices.
4. Portable Note book computers: - These are compact and portable versions of PC with all of these components packed into a single unit size of briefcase.
5. Work stations: - These have high resolution input/output (I/O) graphics capability, but with same dimensions as that of desktop computer. These are used in engineering applications of interactive design work.
6. Servers: These are large storage unit and faster communication link. The computer major role in Internet communication.
7. Super computers: - These are used for large scale numerical calculations required in the applications like weather forecasting, robotic, aircraft design etc.,

FUNCTIONAL UNIT
A computer consists of five functionally independent main parts input, memory, arithmetic logic unit (ALU), output and control unit.
[image:]

Input device accepts the coded information as source program i.e. high level language. This is either stored in the memory or immediately used by the processor to perform the desired operations. The program stored in the memory determines the processing steps. Basically the computer converts one source program to an object program. i.e. into machine language. Finally the results are sent to the outside world through output device. All of these actions are coordinated by the control unit.

Input unit: -
The source program/high level languages program/coded information/simply data is fed to a computer through input devices keyboard is a most common type. Whenever a key is pressed, one corresponding word or number is translated into its equivalent binary code over a cable & fed either to memory or processor. Examples of Joysticks, trackballs, mouse, scanners etc are other input devices.

Memory unit: -
It is function into store programs and data. It is basically to two types
1. Primary memory
2. Secondary memory

1. Primary memory: - Is the one exclusively associated with the processor and operates at the electronics speeds programs must be stored in this memory while they are being executed. The memory contains a large number of semiconductors storage cells. Each cell capable storing one bit of information. These are processed in a group of fixed site called word.
To provide easy access to a word in memory, a distinct address is associated with each word location. Addresses are numbers that identify memory location.
Number of bits in each word is called word length of the computer. Programs must reside in the memory during execution. Instructions and data can be written into the memory or read out under the control of processor.
Memory in which any location can be reached in a short and fixed amount of time after specifying its address is called random-access memory (RAM).
The time required to access one word in called memory access time. Memory which is only readable by the user and contents of which can’t be altered is called read only memory (ROM) it contains operating system.
Caches are the small fast RAM units, which are coupled with the processor and are often contained on the same IC chip to achieve high performance. Although primary storage is essential it tends to be expensive.

2 Secondary memory: - Is used where large amounts of data & programs have to be stored, particularly information that is accessed infrequently.
Examples: - Magnetic disks & tapes, optical disks (ie CD-ROM’s), floppies etc.,

Control unit:-
It effectively is the nerve center that sends signals to other units and senses their states. The actual timing signals that govern the transfer of data between input unit, processor, memory and output unit are generated by the control unit.

Arithmetic logic unit (ALU):-
Most of the computer operators are executed in ALU of the processor like addition, subtraction, division, multiplication, etc. the operands are brought into the ALU from memory and stored in high speed storage elements called register. Then according to the instructions the operation is performed in the required sequence.
The control and the ALU are many times faster than other devices connected to a computer system. This enables a single processor to control a number of external devices such as key boards, displays, magnetic and optical disks, sensors and other mechanical controllers.

Output unit:-
These actually are the counterparts of input unit. Its basic function is to send the processed results to the outside world.
Examples:- Printer, speakers, monitor etc.

BASIC OPERATIONAL CONCEPTS

To perform a given task an appropriate program consisting of a list of instructions is stored in the memory. Individual instructions are brought from the memory into the processor, which executes the specified operations. Data to be stored are also stored in the memory.
Examples: - Add LOCA, R0

This instruction adds the operand at memory location LOCA, to operand in register R0 and places the sum into register. This instruction requires the performance of several steps.
1. First the instruction is fetched from the memory into the processor.
2. Fetch the operand at location LOCA from main memory into the processor.
3. Add the memory operand contents of LOCA to the contents of register R0.
4. Finally the resulting sum is stored in the register R0.

The preceding add instruction combines a memory access operation with an ALU Operations. In some other type of computers, these two types of operations are performed by separate instructions for performance reasons.
Load LOCA, R1
Add R1, R0

The following are the steps to execute the instructions.
1. Fetch the instruction from main memory into the processor
2. Fetch the operand at location LOCA from main memory into the register R1.
3. Add the contents of register R1 and content of register R0
4. Store the result sum into R0.

[image:]
The figure shows how memory & the processor can be connected. In addition to the ALU and the control circuitry, the processor contains a number of registers used for several different purposes.

The instruction register (IR):- Holds the instruction that is currently being executed. Its output is available for the control circuits which generates the timing signals that control the various processing elements in one execution of instruction.

The program counter PC:- This is another specialized register that keeps track of execution of a program. It contains the memory address of the next instruction to be fetched and executed. Besides IR and PC, there are n-general purpose registers R0 through Rn-1.

The other two registers which facilitate communication with memory are: -
1. MAR – (Memory Address Register):- It holds the address of the location to be accessed.
2. MDR – (Memory Data Register):- It contains the data to be written into or read out of the address location.

Operating steps are
1. Programs reside in the memory & usually get these through the I/P unit.
2. Execution of the program starts when the PC is set to point at the first instruction of the program.
3. Contents of PC are transferred to MAR and a Read Control Signal is sent to the memory.
4. After the time required to access the memory elapses, the address word is read out of the memory and loaded into the MDR.
5. Now contents of MDR are transferred to the IR & now the instruction is ready to be decoded and executed.
6. If the instruction involves an operation by the ALU, it is necessary to obtain the required operands.
7. An operand in the memory is fetched by sending its address to MAR & Initiating a read cycle.
8. When the operand has been read from the memory to the MDR, it is transferred from MDR to the ALU.
9. After one or two such repeated cycles, the ALU can perform the desired operation.
10. If the result of this operation is to be stored in the memory, the result is sent to MDR.
11. Address of location where the result is stored is sent to MAR & a write cycle is initiated.
12. The contents of PC are incremented so that PC points to the next instruction that is to be executed.

BUS STRUCTURES

The Bus structure is simplest and most common way of interconnecting various parts of the computer. To achieve a reasonable speed of operation, a computer must be organized so that all its units can handle one full word of data at a given time. A group of lines that serve as a connecting port for several devices is called a bus.
In addition to the lines that carry the data, the bus must have lines for address and control purpose. Simplest way to interconnect is to use the single bus as shown

[image:]

Since the bus can be used for only one transfer at a time, only two units can actively use the bus at any given time. Bus control lines are used to arbitrate multiple
requests for use of one bus. Single bus structure is
Low cost
Very flexible for attaching peripheral devices

Multiple bus structure certainly increases the performance but also increases the cost significantly. All the interconnected devices are not of same speed & time leads to a bit of a problem. This is solved by using cache registers (ie buffer registers). These buffers are electronic registers of small capacity when compared to the main memory but of comparable speed.

The instructions from the processor at once are loaded into these buffers and then the complete transfer of data at a fast rate will take place.

SOFTWARE

	A set of instructions to the process of creating and running is called program. The collections of programs are called software. The software is classified into two types are System software and Application software.

System Software:
	System software consists of several programs. It is directly responsible for controlling, integrating and managing the individual hardware components of a computer system. The system software is a collection of programs that are executed as needed to perform functions such as
· Receiving and interpreting user commands
· Entering and editing application programs and storing them as files in secondary storage devices
· Managing the storage and retrieval of files in secondary storage devices
· Running standard application programs such as word processors, spreadsheets, or games, with data supplied by the user
· Controlling I/O units to receive input information and produce output results
· Translating programs from source form prepared by the user into object from consisting of machine instructions
· Linking and running user-written application programs with existing standard library routines, such as numerical computation packages

	The Language translators are to convert instruction from high level language to machine level language. There are three types of translators, i.e Assembler, Interpreter, Compiler.

· Assembler: The assembler is a program. The main operation of assembler is to convert assembly language to machine language.
· Interpreter: Interpreter is a program that is converting into high level language to Intermediate code. Intermediate code executed by the processor. Interpreter executes each and every line individually. It does not provide .exe files.
· Compiler: Compiler is a program, these compilers to compile the whole program at a time. The programming code will be translating high level language to machine level language code, which is called object code. The object code can be executed directly on the machine.

The System software supported useful for two programs are linker and loader.

· Linker: Generally, software comprises millions of lines of programming statements or code. It is usually much more efficient to divide this code into logical groups and store in different independent modules. Each module can be individual test and debugged. When all the modules work they are linked together to form a large executable program. This single program is performed by linking together the several object modules and libraries by a system program called linker.
· Loader: The loader is a part of the operating system that brings an executable file residing on disk into memory and executes.

PERFORMANCE

[image:]

[image:]

[image:]

[image:]
[image:]
[image:]
[image:]

MULTIPROCESSOR & MULTICOMPUTERS:-

· Large computers that contain a number of processor units are called multiprocessor system.
· These systems either execute a number of different application tasks in parallel or execute subtasks of a single large task in parallel.
· All processors usually have access to all memory locations in such system & hence they are called shared memory multiprocessor systems.
· The high performance of these systems comes with much increased complexity and cost.
· In contrast to multiprocessor systems, it is also possible to use an interconnected group of complete computers to achieve high total computational power. These computers normally have access to their own memory units when the tasks they are executing need to communicate data they do so by exchanging messages over a communication network. This properly distinguishes them from shared memory multiprocessors, leading to name message-passing multi computer.

CHAPTER-2

MACHINE INSTRUCTION AND PROGRAMS

NUMBERS, ARTHMETIC OPERATIONS AND CHARACTERS

	Computers are built using logic circuits that operate on information represented by two valued electrical signals. We label the two values as 0 and 1, and we define the amount of information represented by such a signal as a bit of information, where bit stands for binary digit. The most natural way to represent a number in a computer system is by a string of bits called a binary number. A text character can also be represented by a string of bits called a character code.

Number Representation:

	[image:]

In all three systems, the leftmost bit is 0 for positive numbers and 1 for negative numbers in all three representations using 4-bit numbers. Positive values have identical representations in all systems, but negative values have different representations.

Sign-and-magnitude:
In the sign-and-magnitude systems, negative values are represented by changing the most significant bit (b3 in figure) from 0 to 1 in the B vector of the corresponding positive value.
For example, +5 is represented by 0101, and -5 is represented by 1101.

1’s Complement:
	1’s complement representation; negative values are obtained by complementing each bit of the corresponding positive number. Thus, the representation for -3 is obtained by complementing each bit in the vector 0011 to yield 1100. Clearly, the same operation, bit complementing, is done in converting a negative number to the corresponding positive value. Converting either way is referred to as forming the 1’s-complement of a given number.

2’s Complement:
	In the 2’s-complement system, forming the 2’s-complement of a number is done by subtracting that number from 2n. Hence, the 2’s complement of a number is obtained by adding 1 to the 1’s complement of that number.

[image:]

Addition of Positive numbers:-
Consider adding two 1-bit numbers. Note that the sum of 1 and 1 requires the 2-bit vector 10 to represent the value 2. We say that the sum is 0 and the carry-out is 1. In order to add multiple-bit numbers, we use a method analogous to that used for manual computation with decimal numbers. We add bit pairs starting from the low-order (right) and of the bit vectors, propagating carries toward the high-order (left) end.
	[image:]

Addition and Subtraction of Signed Numbers:

· The sign-and-magnitude system is the simplest representation, but it is also the most awkward for addition and subtraction operations.
· The 2’s complement system is the most efficient method for performing addition and subtraction operations.
· 2’s complement arithmetic considers addition modulo N (written as mod N).
· A graphical device for the description of addition mod N of positive integers is a circle with the N values 0 through N – 1.
· For example the case N = 16, the operation (7+4) mod 16 yields the value 11. To perform this operation graphically, locate 7 on the circle and then move 4 units in the clockwise direction to arrive at the answer 11.
· Now consider a different interpretation of the mod 16 circle. Let the values 0 through 15 be represented by the 4-bit binary vectors 0000, 0001, ….. ,1111, according to the binary number system.
· Then reinterpret these binary vectors to represent the signed numbers from -8 through +7 in the 2’s complement method as shown in figure.

[image:][image:]
Figure: Modular number systems and the 2’s complement system

	[image:]
	[image:]

		[image:]
		[image:]
Overflow in Integer Arithmetic:
[image:]

Characters:

[image:]
Memory Operations:
Two basic Operations involving in the Memory
1.Load(Read or Fetch)
2.Store(Write)
 Load operation transfer a copy of the contents of a specific memory location to the processor
 The Store Operation transfer an item of information from the processor to specific Memory Location
INSTRUCTIONS AND INSTRUCTION SEQUENCING:
	A computer program consists of a sequence of small steps. Such as adding two numbers, testing a particular condition, Reading a character from the keyboard or Sending a character to be displayed on a display screen.
	A computer must have instructions capable of performing four types of operations.
· Data transfers between the memory and the processor registers(MOV, PUSH, POP)
· Arithmetic and logic operations on data (ADD, SUB, MUL, DIV, AND, OR, NOT)
· Program sequencing and control (LOOP, INT)
· I/O transfers (DATAIN, DATAOUT)
Register Transfer Notation (RTN):
[bookmark: _GoBack]	Transfer of information from one location in the computer to another. Possible locations that may be involved in such transfers are memory locations that may be involved in such transfers are memory locations, processor registers, or registers in the I/O subsystem. Most of the time, we identify a location by a symbolic name standing for its hardware binary address.

[image:]

Note: The right hand side of an RTN expression always denotes a value and left hand side is the name of location where the value is to be placed overwriting the old contents of that location.

Assembly Language Notation (ALN):
	Another type of notation to represent machine instructions and programs, Assembly language formate is used.
[image:]

Basic Instruction types:
· In a high-level language program is a command to the computer to add the current values of the two variables called A and B, and to assign the sum to a third variable C. The above high-level language statement requires the action.
C [A] + [B]
To carry out this action, the contents of memory locations A and B are fetched from the memory and transferred into the processor where their sum is computed. This result is then sent back to the memory and stored in location C.

· Furthermore, assume that this instruction contains the memory addresses of the three operands A, B, and C. This three-address instruction can be represented symbolically as
Add A, B, C
Operands A and B are called the source operands, C is called the destination operand, and Add is the operation to be performed on the operands. A general instruction of this type has the format.
Operation Source1, Source 2, Destination

· An alternative approach is to use a sequence of simpler instructions to perform the same task, with each instruction having only one or two operands. Suppose that two-address instructions of the form.
Operation Source, Destination
	
An Add instruction of this type is
Add A, B
Which perform the operation is
B [A] + [B]
When the sum calculated, the result is sent to the memory and stored in location B. Replacing the original contents of this location. This means that operand B is both source and destination.

· The problem can be solved by using another two-address instruction that copies the contents of one memory location into another. Such an instruction is
Move B, C

Which perform the operations is
C [B]
	The operation C [A] + [B] can now be performed by the two instruction sequence
						Move B, C
						Add A, C

· A processer register, usually called the accumulator, may be used for one address instruction.
						Add A
That means add the contents of memory location A to contents of the accumulator register and place the sum back into the accumulator. Let us also introduce the one address instruction
				Load A and
Store A
The Load instruction copies the contents of memory location A into the accumulator and store instruction copies the contents of the accumulator into memory location A. Using only one – address instructions the operation C [A] + [B] can be performed by executing the sequence of instructions.
				Load A
					Add B
					Store C

· Some early computers were designed around a single accumulator structure. Most modern computers have a number of general-purpose processor registers – typically 8 to 32, and even considerably more in some cases. Access to data in these registers is much faster than to data stored in memory locations because the registers are inside the processor

Let Ri represent a general-purpose register. The instructions
Load A, Ri
Store Ri, A and
Add A, Ri.
Are generalizations of the Load, Store, and Add instructions for the single-accumulator case, in which register Ri performs the function of the accumulator.

· When a processor has several general-purpose registers, many instructions involve only operands that are in the register. In fact, in many modern processors, computations can be performed directly only on data held in processor registers. Instructions such as
Add Ri, Rj
 Or
Add Ri, Rj, Rk
In both of these instructions, the source operands are the contents of registers Ri and Rj. In the first instruction, Rj also serves as the destination register, whereas in the second instruction, a third register, Rk, is used as the destination.

· It is often necessary to transfer data between different locations. This is achieved with the instruction
Move Source, Destination
When data are moved to or from a processor register, the Move instruction can be used rather than the Load or Store instructions because the order of the source and destination operands determines which operation is intended. Thus,

Move A, Ri is the same as Load A, Ri
And
Move Ri, A is the same as Store Ri, A

· In processors where arithmetic operations are allowed only on operands that are processor registers, the C = A + B task can be performed by the instruction sequence
Move A, Ri
Move B, Rj
Add Ri, Rj
Move Rj, C

In processors where one operand may be in the memory but the other must be in register, an instruction sequence for the required task would be
Move A, Ri
Add B, Ri
Move Ri, C

Instruction Execution and Straight-Line Sequencing:
	In the preceding discussion of instruction formats, we used to task C [A] + [B]. It shows a possible program segment for this task as it appears in the memory of a computer. We have assumed that the computer allows one memory operand per instruction and has a number of processor registers. The three instructions of the program are in successive word locations, starting at location i. Since each instruction is 4 bytes long, the second and third instructions start at addresses i + 4 and i + 8.
	[image:]

Let us consider how this program is executed. The processor contains a register called the program counter (PC), which holds the address of the instruction to be executed next. To begin executing a program, the address of its first instruction must be placed into the PC. Then, the processor control circuits use the information in the PC to fetch and execute instructions, one at a time, in the order of increasing addresses. This is called straight-line sequencing. During the execution of each instruction, the PC is incremented by 4 to point to the next instruction. Thus, after the Move instruction at location i + 8 is executed, the PC contains the value i + 12, which is the address of the first instruction of the next program segment.

Executing a given instruction is a two-phase procedure. In the first phase, called instruction fetch, the instruction is fetched from the memory location whose address is in the PC. This instruction is placed in the instruction register (IR) in the processor. The instruction in IR is examined to determine which operation is to be performed. The specified operation is then performed by the processor. This often involves fetching operands from the memory or from processor registers, performing an arithmetic or logic operation, and storing the result in the destination location.

Branching:
Branching is a transfer of control from the current statement to another statement construct in the program unit.

· Consider the program adding a list of n numbers.
· The addresses of the memory locations containing the n numbers are symbolically given as NUM1, NUM2, …… NUMn and a separate Add instruction is used to add each number to the contents of register R0.
· After all the numbers have been added the result is placed in memory location SUM.

[image:]

· Instead of using a long list of add instructions, it is possible to place a single add instruction in a program loop, as shown in figure.
· The loop is a straight-line sequence of instructions executed as many times as needed.
· It starts at location LOOP and ends at the instruction Branch > 0.
		[image:]

· During each pass through this loop, the address of the next list entry is determined, and that entry is fetched and added toR0.
· Number of entries in the list ‘n’ is stored in memory location N.
· Register R1 is used as a counter to determine the number of time the loop is executed.
· The Loop is a straight line sequence of instructions executed as many times needed. The loop starts at location loop and ends at the instruction Branch > 0.
· During each pass Address of the next list entry is determined, that entry is fetched and added to R0.
· The instruction decrement1 reduces the content of R1 by 1 each time through the loop.
· Then Branch Instruction loads a new value into the PC. As a result the processor fetches and executes the instruction at this new address called the Branch target.
· A conditional branch instruction causes a branch only if a specified condition is satisfied. If the condition is not satisfied, the PC is incremented in the normal way, and the next instruction in sequential address order is fetched and executed
· It moves the final result from R0 into memory location SUM.

Condition Codes:
	The processor keeps track of information about the results of various operations for use by subsequent conditional branch instructions. This is accomplished by recording the required information in individual bits, often called condition code flags. These flags are usually grouped together in a special processor register called the condition code register or status register. Individual condition code flags are set to 1 or cleared to 0, depending on the outcome of the operation performed.

Four commonly used flags are
N(negative): Set to 1 if the result is negative; otherwise, cleared to 0
Z(zero) : Set to 1 if the result is 0; otherwise, cleared to 0
V(overflow) : Set ot1 if arithmetic overflow occurs; otherwise, cleared to 0
C(carry) : Set to 1 if a carry-out results from the operation; otherwise, cleared to 0

ADDRESSING MODES:
	
	The different ways in which the location of an operand is specified in an instruction are referred to as Addressing modes.

 [image:]
Implementation of variable and constants:
· Variables and constants are the simplest data types and are found in almost every computer program.
· In Assembly language a variable is represented by allocating a register or a memory location to hold its value.
· The value can be changed as needed using appropriate instructions.
· There are 2 accessing modes to access the variables.
· Register mode
· Absolute mode
· Next, the Address and data constants can be represented in assembly languge using the Immediate mode.
[image:]
[image:]
[image:]
Indirection and Pointers:
Instruction does not give the operand or its address explicitly. The instruction provides information from which the new address of the operand can be determined. This address is called Effective Address (EA) of the operand.
Indirect mode:
· The EA of the operand is the contents of a register or memory location.
· The register or memory location that contains the address of an operand is called a pointer.
· We denotes Indirection by
· Name of the register
· New address given the instruction.
Ex: Add (R1), R0
The operand is in memory. Register R1 gives the effective address (B) of the operand. The data is read from location B and added to contents of register R0.
[image:]
· To execute the Add instruction in figure (a), the processor uses the value which is in Register R1, as the EA of the operand. It request a read operation from the memory to read the contents of location B. The value read is the desired operand, which the processor adds to the contents of register R0.
· Indirect addressing through a memory location is also possible as shown in figure (b), the processor first reads the contents of memory location A, the requests a second read operation using the value B as an address to obtain the operand.
Let us now return to the program for adding a list of numbers. Indirect addressing can be used to access successive numbers in the list.
[image:]
[image:]
Indexing and Arrays:
	A different kind of flexibility for accessing operands is useful in Lists and Arrays.
Index mode:[image:]
[image:]
Base with Index mode:
[image:]
Base with Index and Offset :
[image:]
Relative Addressing mode:
[image:]
Additional Modes:
	The five basic addressing modes found in most computers. Although these modes success for general computation, many computers provide additional modes intended to certain programming tasks. The two modes described next are useful for accessing data items in successive locations in the memory.
Auto Increment mode:
	Effective address of the operand is the contents of a register specified in the instruction. After accessing the operand, the contents of this register are automatically incremented to point to the next consecutive memory location.(R1)+
Example:
		Add R1, (R2)+
		R1 = R1 +M[R2]
		R2 = R2 + d	
Useful for stepping through arrays in a loop. R2 – start of array d – size of an element

Auto Decrement Mode:
	Effective address of the operand is the contents of a register specified in the instruction. Before accessing the operand, the contents of this register are automatically decremented to point to the previous consecutive memory location. –(R1)
Example:
		Add R1, -(R2)
			R2 = R2 - d
		R1 = R1 +M[R2]
	Auto decrement mode is same as auto increment mode. Both can also be used to implement a stack as push and pop. Auto increment and Auto decrement modes are useful for implementing “Last-In-First-Out” data structures.

BASIC INPUT / OUTPUT OPERATIONS:
· Input / Output operations are essential a task that reads in character input from a keyboard and produces character output on a display screen.
· A simple way of performing such I/O tasks is to use a method known as program – controlled I / O.
· The rate of data transfer from the keyboard to a computer is limited by the typing speed of the user, which is to exceed too few characters per second.
· The rate of output transfer from the computer to the display is much higher.
· It is determined by the rate at which character can be transmitted over the link b/w the computer and the display device, several thousand character per second.
· This is still much slower than the speed of processor that can execute many millions of instructions per second.
· The difference in speed b/w the processor and I/O device creates for mechanisms to synchronize the transfer of data between them.
· A solution in this problem, input is sent from the keyboard in a similar way the processor waits for a signal indicating that a character key has been struck and that its code is available in some buffer register. Then the processor proceeds to read that code.
· On output, the processor sends the first character and then waits for a signal from the display that the character has been received. It then sends the second character and so on.

The keyboard and the display are separate device as shown in figure, the action of striking a key on the keyboard does not automatically cause the corresponding character to be displayed on the screen. One block of instructions in the I/O program transfers the character into the processor, and another associated block of instructions causes the character to be displayed.

	[image:]	
[image:]

	For example, the processor can monitor the keyboard status flag SIN and transfer a character from DATAIN to register R1 by the following sequence of operations
		READWAIT Branch to READWAIT if SIN = 0
				Input from DATAIN to R1
	The Branch operation is usually implemented by two machine instructions. The first instruction tests the status flag and the second performs the branch. The main idea is that the processor monitors the status flag by executing a short wait loop and proceeds to transfer the input data when SIN is set to 1 as a result of a key being struck. The input operation resets SIN to 0. An analogous sequence of operations is used for transferring output to the display.
		WRITEWAIT Branch to WRITEWAIT if SOUT = 0
				Output from R1 to DATAOUT
	Until now, the addresses issued by the processor to access instructions and operands always refer to memory locations. Many computers use an arrangement called memory – mapped I/O in which some memory address values are used to refer to peripheral device buffer registers, such as DATAIN and DATOUT.
	For example, the contents of the keyboard character buffer DATAIN can be transferred to register R1 in the processor by the instruction.
			MoveByte DATAIN, R1
Similarly, the contents of register R1 can be transferred to DATAOUT by the instruction
			MoveByte R1, DATAOUT
The status flags SIN and SOUT are automatically cleared when the buffer registers DATAIN and DATAOUT are referenced respectively. The MoveByte operation code signifies that the operand size is a byte, to distinguish it from the operation code Move that has been used for word operands. It is possible to deal with the status flags SIN and SOUT in the same way, by assigning them distinct addresses. However, it is more common to include SIN and SOUT in device status registers, one for each of the two devices. Let us assume that bit b3 in registers INSTATUS and OUTSTATUS corresponds to SIN and SOUT respectively. The read operation just described may now be implemented by the machine instruction sequence
		READWAIT Testbit #3, INSTATUS
			 Branch = 0	READWAIT
			 MoveByte 	DATAIN, R1
	The write operation may be implemented as
		WRITEWAIT Testbit #3, OUTSTATUS
			 Branch = 0	WRITEWAIT
			 MoveByte 	R1, DATAOUT
[image:]

STACKS AND QUEUES:
	A computer program often needs to perform a particular subtask using the familiar subroutine structure. In order to organize the control and information linkage between the main program and the subroutine, a data structure called a stack is used.
[image:]

[image:]
· These two instructions move the top value from the stack into location ITEM and then increment the stack pointer by 4 so that it points to the new top element.
· If the processor has the Autoincrement and Autodecrement addressing modes, then the push operation can be performed by the single instruction
Move NEWITEM, -(SP)
		And the pop operation can be performed by
					Move (SP)+, ITEM
[image:]

Queues:
	Another useful data structure that is similar to the stack is called a queue. Data are stored in and retrieved from a queue on a first-in-first-out (FIFO) basis. Thus, if we assume that the queue grows in the direction of increasing addresses in the memory, which is a common practice, new data are added at the back (high-address end) and retrieved from the front (low-address end) of the queue.
	
[image:]
SUBROUTINES:
[image:]
[image:]
Subroutine Nesting and the Processor Stack :
[image:]
Parameter Passing:
[image:]
[image:]
[image:]

ADDITIONAL INSTRUCTIONS:
· The following instructions are move, load, store, clear, add, subtract, increment, decrement, branch, test bit, compare, call and return. These 13 instructions along with the addressing modes in table.
· To allow write routines to illustrate machine instruction sequencing, including branching, the subroutine structure and the basic memory mapped I/O operations.
· Even this small set of instructions has a number of redundancies.
· The load and store instructions can be replaced by Move, and the Increment / Decrement instructions can be replaced by Add and Subtract respectively. Clear can be replaced by a Move instruction containing an immediate operand of zero.
· Therefore only 8 instructions would have been sufficient for our purposes.
· But it is not unusual to have some redundancy in practical machine instruction sets.
· Certain simple operations can usually be accomplished in a number of different ways. Some alternatives may be more efficient than others.
· In this section we introduce a few more important instructions that are found in most instruction sets.
Logic Instructions:
· Logic operations such as AND, OR, and NOT applied to individual bits are the basic building blocks of digital circuits.
· Which is using instructions that apply operations to all bits of a word or byte independetly and parallel.
· For example,
 Not dst (destination),
Complements all bits contained in the destination operand, changing 0’s to 1’s and 1’s to 0’s.
· That adding 1 to the 1’s complement of a signed positive number forms the negative version in 2’s complement representation.

· Example, +3 (0011) is converted to -3 (1101) by adding 1 to the 1’s complent of 0011. If 3 is contained in register R0.
Not R0
Add #1, R0
Achieve the conversion, Move computers have a single instruction
Nagate R0

Shift and Rotate Instructions:
Shift Instructions: Shift Instructions is shift an operand, bit by bit to the right or to the left, Directions of shift is dependent open the specific instructions
· There are many applications that require the bits of an operand to be shifted right or left some specified number of bit positions.
· For general operands, we use a logical shift
· For a number, we use a Arithmetic shift which preserve the sign of the number.
Logical Shift:
· Two Logical shift instructions are Shifting Left (LshiftL) and Shifting Right (LshiftR)
· These instructions shift an operand over a number of bit positions specified in a count operand contained in the instruction.
· The general form of a logical left shift
LshiftL count, dst
· The count operand may be given as an immediate operand or it may be contained in a processor register.
· Vacated positions are filled with zeros and the bits shifted out are passed through the carry flag C and then dropped.
· The logical shift right instruction, works in the same manner except that it shifts to the right.
· The general form of a logical right shift
LshiftR count, dst
.Arithmetic Shifts:
· The 2’s-complement binary number representation that shifting a number one bit position to the left is equivalent to multiplying it by 2, and shifting it to the right is equivalent to dividing it by 2.
· Of course, overflow occurs on shifting left, and the remainder is lost in shifting right.
· Another important observation is that on a right shift the sign bit must be repeated as the fill – in bit for the vacated position.
· This requirement on right shifting distinguishes arithmetic shifts from logical shifts in which the fill – in bit is always 0. Otherwise the two types of shifts are very similar.

[image:]

[image:]				[image:]	
[image:]
[image:]

PROBLEMS
1.[image:]
2.[image:]
3.[image:][image:]
4.[image:]

5.[image:]
6.[image:]
7.[image:]
8.[image:]

________*****________
37
				
image2.png
VAR MDR
Contol
v %,
R
R .
. AU
Roy
» general pucgose.
regisens

Figure 12 Connections between the processor and the memory.

image3.png
Input

[

=

Figure 1.3 Singlebus shuchre.

image4.png
e The most important measure of performance of a computer is how quickly it can execute programs.
« The speed of a computer is affected by the design of

1) Instruction-set.

2) Hardware & the technology in which the hardware is implemented.

3) Software including the operating system.
« Because programs are usually written in a HLL, performance is also affected by the compiler that
translates programs into machine language. (HLL> High Level Language).
« For best performance, it is necessary to design the compiler, machine instruction set and hardware in
a co-ordinated way.

image5.png
Figwe 1.5 The processor cache.

image6.png
 Let us examine the flow of program instructions and data between the memory & the processor.
« At the start of execution, all program instructions are stored in the main-memory.
« As execution proceeds, instructions are fetched into the processor, and a copy is placed in the cache.
« Later, if the same instruction is needed a second time, it is read directly from the cache.
« A program will be executed faster
if movement of instruction/data between the main-memory and the processor is minimized
which is achieved by using the cache.

PROCESSOR CLOCK
« Processor circuits are controlled by a timing signal called a Clock.
« The clock defines regular time intervals called Clock Cycles.
« To execute a machine instruction, the processor divides the action to be performed into a sequence
of basic steps such that each step can be completed in one clock cycle.
« Let P = Length of one clock cycle
R = Clock rate.
« Relation between P and R is given by

« R is measured in cycles per second.
« Cycles per second is also called Hertz (Hz)

image7.png
BASIC PERFORMANCE EQUATION
e let T = Processor time required to executed a program.
N = Actual number of instruction executions.
S = Average number of basic steps needed to execute one machine instruction.
R = Clock rate in cycles per second.
« The program execution time is given by

« Equl is referred to as the basic performance equation.
« To achieve high performance, the computer designer must reduce the value of T, which means
reducing N and S, and increasing R.

> The value of N is reduced if source program is compiled into fewer machine instructions.

» The value of S is reduced if instructions have a smaller number of basic steps to perform.

> The value of R can be increased by using a higher frequency clock.
« Care has to be taken while modifying values since changes in one parameter may affect the other.

image8.png
CLOCK RATE
« There are 2 possibilities for increasing the clock rate R:
1) Improving the IC technology makes logic-circuits faster.
This reduces the time needed to compute a basic step. (IC > integrated circuits).
This allows the clock period P to be reduced and the clock rate R to be increased.
2) Reducing the amount of processing done in one basic step also reduces the clock period P.
« In presence of a cache, the percentage of accesses to the main-memory is small.
Hence, much of performance-gain expected from the use of faster technology can be realized.
The value of T will be reduced by same factor as R is increased *." S & N are not affected.

image9.png
PERFORMANCE MEASUREMENT
« Benchmark refers to standard task used to measure how well a processor operates.
« The Performance Measure is the time taken by a computer to execute a given benchmark.
« SPEC selects & publishes the standard programs along with their test results for different application
domains. (SPEC - System Performance Evaluation Corporation).
« SPEC Rating is given by
Running time on the reference computer
Running time on the compaler under test
« SPEC rating = 50 - The computer under test is 50 times as fast as reference-computer.
« The test is repeated for all the programs in the SPEC suite.
Then, the geometric mean of the results is computed.
« Let SPEC, = Rating for program ‘i' in the suite.
Overall SPEC rating for the computer is given by

SPEC rating = (Hsmc)A

st

SPEC rating

where n = no. of programs in the suite.

image10.png
INSTRUCTION SET: CISC AND RISC

RISC

CISC

Simple instructions taking one cycle.

Complex instructions taking multiple cycle.

Instructions are executed by hardwired control
unit.

Instructions are executed by microprogrammed
control unit.

Few instructions.

Many instructions.

Fixed format instructions.

Variable format instructions.

Few addressing modes, and most instructions
have register to register addressing mode.

Many addressing modes.

Multiple register set.

Single register set.

Highly pipelined-

No pipelined or less pipelined.

image11.png
Consider an n-bit vector
B =by-1...baby

where b, = Oor 1 for 0 < i < n~ 1. This vector can rereseat unsigned ineger values
V in the range 0 to 2* — 1, where.
V(B) =bpt x 27 o by x 2 by x 2

‘We obviously need o represent both positive and negative numbers. Three systems are
used for representing such numbers:

« Sign-and-maguitude

+ I’scomplement

+ 2'scomplement

image12.png
25

Vaes represented
1's complement

Signaod

bbbty

+1
+6
+5
+4
+3
+2

+1
+0
-8
-1
-6
-5
-4
-3
-2
-1

+1
+6
+5
+4
+3
+2

+
+6

Bincry signadinioge epresenitions.

Figure

image13.png
‘Addilon of 1bit numbers.

image14.png
{2) Circle epresentation of integers mod N

image15.png
(b} Mod 16 system for 2s-complement numbers.

image16.png
‘We now state the rules goveming the addition and subtraction of n-bit signed

oumbers using the 2's-complement epresentaton system.

1. Toadd two numbers,add thir n-bit repesentations, ignorin the cary-out signal
from the most significan bif (MSB) positon. The sum il be the algebraically
correct value in the 2's-complemert representation e long as the answer s in the
range —2"" through 42" — 1.

image17.png
2. To subtract two numbers X and ¥, that is, to perform X — Y, form the 2's-
complement of ¥ and then add it 0 X, as in rule 1. Again, the result will be.
the algebraicaly correct value in the 2's-complement representation system if the
answer is in the range —2°~" through +2*~ — 1.

image18.png
® 0010 (2) ® 0100 (+4)
+0011 (+3) 41010 (6

0101 (5) oy

© 1011 (-5) ot G
+1110 (D) +1101 ()

1001 N 0100 (+4)

image19.png
@

®

®

W

o

o (- 1101

1001 <011t
0100 (+4)

0010 +2) N 0010

-0100 8 D +1100
1110 -2)

o110 (+6) o110

011 63) _sniol
0011 63

1001 “n 1001

ERCIE IS WY +0101
e @

1001 (9 1001

- 0001 (+1) + 1111
1000 -8)

0010 @2 0010

S1101 (-3) = +0011
o101 ()

image20.png
In the 2's-complement number representation sysiom, n bits can represent values in
the range 2" to +2"~" ~ 1. For exampl, using four bis, the range of numbers
that can be represented is —8 through +7, as shown in Figure . When the result of
an arithmetic operation s outside the representable range, an arithmetic overflow has
occurred.

‘When adding unsigned oumbers, the carry-ou, c,, rom the most significant bt
position serves asthe overflow indicator, However, this does not work for adding signed
‘numbers. For example, when using 4-bit signed numbers, if we try to add the numbers
+7 and +4, the output sum vetr, §,is 1011, which is the code for ~$, an incorrect
result. The carry-out signal from the MSB positionis 0. Similarly,if we ry to add —4
and 6, we get § = 0110 = +6, another incorrect result, and n this case, the carry-out
sigaal is 1. Thus, overflow may occur if both summands have the same sign. Clearly,
the addition of umbers with differeat signs cannot cause overfiow. This leads to the
following conclusions:

1. Overflow can occur only when adding two numbers tha have the same sign.
2. The canry-out signal from the sign-bit osiion s not & suficientindicator of ver-
flow when adding signed numbers.

A simple way todetectoverflow s o examine the signsof th two summands X and ¥
and the siga ofthe resalt, When both operands X and Y have the same sign, an overflow
occurs when thesign of § s not the same as thesigns of X and Y.

image21.png
In addition to numbers, computers must be able to handle nonnumeric text informa-
tion consising of characters. Characters can be leters of the alphabet, decimal digis,
‘punctuation marks, and 5o on. They are represented by codes that are usualy eight bits
Tong. One of the most widely used such codes s the American Standards Comunitiee
on Information Interchange (ASCII) code.

image22.png
Location Hardware Binary Address Example Description

Memory LOC, PLACE, NUM RI <« [LOC] Contents of memory-location LOC
are transferred into register R1.

Processor RO, R1 R2 [R3] € [R1]+[R2] | Add the contents of register R1 &R2
and places their sum into R3.

/0 Registers | DATAIN, DATAOUT RI < DATAIN Contents of 1/0 register DATAIN are

transferred into register R1.

image23.png
Assembly Lanquage Format
Move LOC, R1

Transfer data from memory-location LOC to register R1. The contents of LOC
are unchanged by the execution of this instruction, but the old contents of

register R1 are overwritten.

Add the contents of registers R1 and R2, and places their sum into register R3.

Add R1, R2, R3

image24.png
Address Contents
Begin executon her: —e- | Move ARD
i+4 Add_ BRO
i+8 Move ROC
A
B
c

Figwe A program for C « [A] + Bl

3.instruction

Dasafor
the pogram

!

image25.png
i Move NUMIRO

4 Add NUM2RO

i*8 Add__NUM3RO

ivdn-4 AM NUMnRO

ivdn Move ROSUM

suM

NOMI

NUM2

Figwe Ashightlng program for
adding n oumbers.

image26.png
Figure.

Move NRI

Clezr RO
LOOP
‘Determine address of
“Next" mumber and add
“Next” mamber o R0
Decrement RI
Branch>0 LOOP
|

Move ROSUM

suM

N n

NUMI

NUM2

NUMA

Using a loop fo odd n numbers.

image27.png
Index
Bse wihindex
Base withndex

Relaive
Asticrement

X®)
®iRj)
XRiR)

EA =R+ Rj)
EA= R+ Ril+X

EA=[PC] +X

EA= R
Tcrement R

Decomment R
BA=R]

image28.png
Register Mode
« The operand is the contents of a register.
» The name (or address) of the register is given in the instruction.
« Registers are used as temporary storage locations where the data in a register are accessed.
« For example, the instruction
‘Move R1, R2 :Copy content of register R1 into register R2.

image29.png
Absolute (Direct) Mode
« The operand is in a memory-location.
‘The address of memory-location is given explicitly in the instruction.
« The absolute mode can represent global variables in the program.
 For example, the instruction
‘Move LOC, R2

py content of memory-location LOC into register R2.

image30.png
Immediate Mode
«The operand s given explicitly in the instruction.
« For example, the instruction
Move #200, R0 ;Place the value 200 in register RO.
« Clearly, the immediate mode is only used to specify the value of a source-operand.

image31.png
! i

Add_(RDRO Add_ (RO
Main :
memory :
B
Rl Register Operand
1
(8) Through a general-purpose register (5) Through a memory location

Figure

Indiect odessing

image32.png
Address Comenss

Move NRL
Mowe ANUMLR2 Inalzation
Clear RO

—=100P Adl (R)RO
Add R
Decrement RI
Brmch0 LOOP
Move ROSUM

Use o indirec addresing inhe program

image33.png
Program Explanation

« In above program, Register R2 is used as a pointer to the numbers in the list, and the operands are accessed
indirectly through R2.

« The initialization-section of the program loads the counter-value n from memory-location N into R1 and uses the
immediate addressing-mode to place the address value NUM1, which is the address of the first number in the list,
into R2. Then it clears RO to 0.

« The first two instructions in the loop implement the unspecified instruction block starting at LOOP.

« The first time through the loop, the instruction Add (R2), RO fetches the operand at location NUM1 and adds it to
RO.

« The second Add instruction adds 4 to the contents of the pointer R2, so that it will contain the address value
NUM2 when the above instruction is executed in the second pass through the loop.

image34.png
* The operation is indicated as X(Ri)

where X=the constant value which defines an offset(also called a displacement).

Ri=the name of the index register which contains address of a new location.

« The effective-address of the operand is given by EA=X+[Ri]
« The contents of the index-register are not changed in the process of generating the effective-
address.
« The constant X may be given either

= as an explicit number or

—» as a symbolic-name representing a numerical value.

image35.png
2l oRDR2 | Add 1000RDR2

—L 1020] Operand

(o) Offst s given as a constant (b) Offsetis in the index register

image36.png
* Another version of the Index mode uses 2 registers which can be denoted as
(Ri, Rj)

« Hefre, a second register may be used to contain the offset X.

« The second register is usually called the base register.

« The effective-address of the operand is given by EA=[Ri]+[Rj]

« This form of indexed addressing provides more flexibility in accessing operands because
both components of the effective-address can be changed.

image37.png
* Another version of the Index mode uses 2 registers plus a constant, which can be denoted as
X(Ri, Rj)

« The effective-address of the operand is given by EA=X+[Ri]+[Rj]

« This added flexibility is useful in accessing multiple components inside each item in a record, where

the beginning of an item is specified by the (Ri, Rj) part of the addressing-mode. In other words, this

mode implements a 3-dimensional array.

image38.png
o Tl

is similar to index-mode with one difference:
The effective-address is determined using the PC in place of the general purpose register Ri.
« The operation is indicated as X(PC).
« X(PC) denotes an effective-address of the operand which is X locations above or below the current
contents of PC.
« Since the addressed-location is identified "relative” to the PC, the name Relative mode is associated
with this type of addressing.
mode is used commonly in conditional branch instructions.
« An instruction such as
Branch > 0 LOOP ~;Causes program execution to go to the branch target location
identified by name LOOP if branch condition is satisfied.

image39.png
|

Fgure

|]| ([
Csm O sor
Kepoud Disiey

Bus comnecionfor processor, keyboord, and disply.

image40.png
 Consider the problem of moving a character-code from the keyboard to the processor
For this transfer, buffer-register DATAIN & a status control flags(SIN) are used.
« When a key is pressed, the corresponding ASCII code is stored in a DATAIN register associated with
the keyboard.
» SIN=1 > When a character is typed in the keyboard.
character is in DATAIN.
» SIN=0 > When the character is transferred to the processor.
« An analogous process takes place when characters are transferred from the processor to the display.
For this transfer, buffer-register DATAOUT & a status control flag SOUT are used.
» SOUT=1 > When the display is ready to receive a character.
» SOUT=0 > When the character is being transferred to DATAOUT.
« The buffer registers DATAIN and DATAOUT and the status flags SIN and SOUT are part of circuitry
commonly known as a device interface.

s informs the processor that a valid

image41.png
‘The Testbit instruction tests the state of one bit in the destination location, where the bit
position to be testedisindicated by the fist operand. If the bit tested is equal t0 0, then
the condition of the branch instruction i true, and a branch is made o the beginning
of the wait loop. When the device is ready, that is, when the bit tested becomes equal
101, the data are read from the input buffer or written into the output buffec.

image42.png
* A stack is a special type of data structure where elements are inserted from one end and elements
are deleted from the same end. This end is called the top of the stack

« The various operations performed on stack:
1) Insert: An element is inserted from top end. Insertion operation is called push operation.

2) Delete: An element is deleted from top end. Deletion operation is called pop operation.
« A processor-register is used to keep track of the address of the element of the stack that is at the top
at any given time. This register is called the Stack Pointer (SP).
« If we assume a byte-addressable memory with a 32-bit word length,
1) The push operation can be implemented as
Subtract #4, SP
Move NEWITEM, (SP)
2) The pop operation can be implemented as
Move (SP), ITEM
Add #4, 5P

image43.png
—
[S
Suck
ponkr .
regiser :
_ Current.
s il T wpelement
17
39
Suck
BOTTOM @ <} Porom
2

Figus A siock of words in the memory.

image44.png
P - 19
8
[P 17
79 79
Stack
5 s
NEWITEM 19 TEM E
(2) Afer push from NEWITEM (6) Afer pop into ITEM

Figwe Effectofstack operafions on the siackin Figure

image45.png
« Difference between stack and queue?
1) One end of the stack is fixed while the other end rises and falls as data are pushed and
popped.
2) In stack, a single pointer is needed to keep track of top of the stack at any given time.
In queue, two pointers are needed to keep track of both the front and end for removal
and insertion respectively.

3) Without further control, a queue would continuously move through the memory of a

computer in the direction of higher addresses. One way to limit the queue to a fixed region in
memory is to use a circular buffer.

image46.png
* A subtask consisting of a set of instructions which is executed many times is called a Subroutine.
« A Call instruction causes a branch to the subroutine (Figure: 2.16).
« At the end of the subroutine, a return instruction is executed
« Program resumes execution at the instruction immediately following the subroutine call
The way in which a computer makes it possible to call and return from subroutines is referred to as
its Subroutine Linkage method.
« The simplest subroutine linkage method is to save the return-address in a specific location, which
may be a register dedicated to this function. Such a register is called the Link Register.
« When the subroutine completes its task, the Return instruction returns to the calling-program by
branching indirectly through the link-register.
« The Call Instruction is a special branch instruction that performs the following operations:
— Store the contents of PC into link-register.
— Branch to the target-address specified by the instruction.
« The Return Instruction is a special branch instruction that performs the operation:
— Branch to the address contained in the link-register.

image47.png
Memory Mem
Tocationi ~ Calling program Tocation Subroutine SUB

200 Call SUB R 1000 first instruction
204 next instruction =——

Return

xooo

_I:I
l:l_

Return
Figure s.b,u.m,. linkage using a link register.

image48.png
* Subroutine Nesting means one subroutine calls another subroutine.
« In this case, the return-address of the second call is also stored in the link-register, destroying its
previous contents.
« Hence, it is essential to save the contents of the link-register in some other location before calling
another subroutine. Otherwise, the return-address of the first subroutine will be lost.
« Subroutine nesting can be carried out to any depth. Eventually, the last subroutine called completes
its computations and returns to the subroutine that called it.
« The return-address needed for this first return is the last one generated in the nested call sequence.
That s, return-addresses are generated and used in a LIFO order.
« This suggests that the return-addresses associated with subroutine calls should be pushed onto a
stack. A particular register is designated as the SP(Stack Pointer) to be used in this operation.
« SP is used to point to the processor-stack.
« Call instruction pushes the contents of the PC onto the processor-stack.

Return instruction pops the return-address from the processor-stack into the PC.

image49.png
e The exchange of information between a calling-program and a subroutine is referred to as

Parameter Passing
« The parameters may be placed in registers or in memory-location, where they can be accessed by

the subroutine.
« Alternatively, parameters may be placed on the processor-stack used for saving the return-address.

« Following is a program for adding a list of numbers using subroutine with the parameters passed
through registers.

image50.png
Calling program

Move NR1 RI serves as a counter.
Move #NUMLR2 R points to the list
Call LISTADD Call subroutine.
Move ROSUM Save result.

Subroutine

LISTADD Clear RO Initialize sum to 0.

LOOP Add (R2)+RD Add entry from lst.
Decrement R1
Branch>0 LOOP
Return Return to calling program.

Figore | Program of Figure 2.16 writen s o subroufno; paramelers possed hrough regiser.

image51.png
Passing parameters through processor registers is straightforward and efficient.
Figure shows how the program in for adding a list of numbers can be
implemented as subroutine, with the parameters passed through regisers. The size of
thelist,n, contained in memory location N, and the address, NUM1, of the firstnumber,
are passed through registers R1 and R2. The sum computed by the subroutine is passed
back tothe calling program through register R0. The firstfour instructions n Figure.
‘constitute the relevant part of the calling program. The first two instructions load n and
NUMI into R1 and R2. The Call instruction branches to the subroutine starting at
ocation LISTADD. Thisinstruction also pushes the retun address onto th processor
stack. The subroutine computes the sum and places it n RO. Afte th retum operation
is performed by the subroutine, the sum is stored in memory location SUM by the
calling program.

image52.png
(a) Logical shitt left

l—0 0|
betore:[0 1 1 1 0
atte:} 0 0 0 1 1 1
LShiftL R3, #2 (b) Logical shit right LShiftR R3, 2
R3 —= C —=
0 10 0
1 0 1
(¢) Arithmetic shift right AShittR R3, #2

Logical and arithmetic shift instructions.

image53.png
ROTATE OPERATIONS
« In shift operations, the bits shifted out of the operand are lost, except for the last bit shifted out
which is retained in the Carry-flag C.
« To preserve all bits, a set of rotate instructions can be used.
« They move the bits that are shifted out of one end of the operand back into the other end.
« Two versions of both the left and right rotate instructions are usually provided.

In one version, the bits of the operand is simply rotated.

In the other version, the rotation includes the C flag.

image54.png
(8) Rotate et without carry Folatel. #2R0

image55.png
%
e [f] [0 o
o [[] [iiios

(b) Rotate left with carry. RotatelC #2,R0

RO

v [0 o

wo [0 o

(c) Flotate right without camy RotateR #2,R0

[BRe]

image56.png
bt [0 1 1 1 0 o1t
e 1001110 - - -0
) Rotate rightwith carry RotatoRC #2,R0

Figurs Rolote insuctons

image57.png
List the steps needed to execute the machine instruction:
Load R2, LOC

in terms of transfers between the components of processor and some simple control commands.
Assume that the address of the memory-location containing this instruction is initially in register PC.
Solution:

1. Transfer the contents of register PC to register MAR.

2. Issue a Read command to memory.

And, then wait ul it has transferred the requested word into register MDR.

3. Transfer the instruction from MDR into IR and decode it.

4. Transfer the address LOCA from IR to MAR.

5. Issue a Read command and wait until MDR is loaded.
6. Transfer contents of MDR to the ALU.
7.
8.
9.
1

. Transfer contents of RO to the ALU.

. Perform addition of the two operands in the ALU and transfer result into RO.
Transfer contents of PC to ALU.

0. Add 1 to operand in ALU and transfer incremented address to PC.

image58.png
List the steps needed to execute the machine instruction:
Add R4, R2, R3

in terms of transfers between the components of processor and some simple control commands.
Assume that the address of the memory-location containing this instruction is initially in register PC.
Solution:

1. Transfer the contents of register PC to register MAR.

2. Issue a Read command to memory.

And, then wait until it has transferred the requested word into register MDR.

. Transfer the instruction from MDR into IR and decode it.
. Transfer contents of R1 and R2 to the ALU.
. Perform addition of two operands in the ALU and transfer answer into R3.
. Transfer contents of PC to ALU.
. Add 1 to operand in ALU and transfer incremented address to PC.

NG AW

image59.png
Give a short sequence of machine instructions for the task "Add the contents of memory-location A
to those of location B, and place the answer in location C”. Instructions:
Load Ri, LOC
and
Store Ri, LOC

image60.png
Solution:

Load A, RO
Load B, R1
Add RO, R1
Store R1, C

image61.png
A program contains 1000 instructions. Out of that 25% instructions requires 4 clock cycles,40%
instructions requires 5 clock cycles and remaining require 3 clock cycles for execution. Find the total
time required to execute the program running in a 1 GHz machine.
Solution:

N = 1000

25% of N= 250 instructions require 4 clock cycles.

40% of N =400 instructions require 5 clock cycles.

35% of N=350 instructions require 3 clock cycles.

T = (N*S)/R= (250*%4+400*5+350*3)/1X10° =(1000+2000+1050)/1*¥10°=

.05 ps.

image62.png
For the following processor, obtain the performance.
Clock rate = 800 MHz
No. of instructions executed = 1000
Average no of steps needed / machine instruction = 20
Solution:
NxS§

T= = (1000*20)/800 * 10°=25 micro sec or 25*10° sec

image63.png
Write a program that can evaluate the expression A*B+C*D In a single-accumulator processor.
Assume that the processor has Load, Store, Multiply, and Add instructions and that all values fit in the
accumulator
Solution:
A program for the expression is:
Load A
Multiply B
Store RESULT
Load C
Multiply D
Add RESULT
Store RESULT

image64.png
Registers R1 and R2 of a computer contains the decimal values 1200 and 4600. What is the effective-
address of the memory operand in each of the following instructions?

(a) Load 20(R1), RS

(b) Move #3000,R5

(c) Store R5,30(R1,R2)

(d) Add -(R2),R5

(e) Subtract (R1)+,R5

Solution:
(a) EA = [R1]+Offset=1200+20 = 1220
(b) EA = 3000

(c) EA = [R1]+[R2]+Offset = 1200+4600+30=5830
(d) EA = [R2]-1 = 4599
(e) EA

image65.png
Registers R1 and R2 of a computer contains the decimal values 2900 and 3300. What is the effective-
address of the memory operand in each of the following instructions?

(a) Load R1,55(R2)

(b) Move #2000,R7

(c) Store 95(R1,R2),R5

(d) Add (R1)+,RS

(e) Subtract-(R2),R5
Solution:

a) Load R1,55(R2) = This is indexed addressing mode. So EA = 55+R2=55+3300=3355.

b) Move #2000,R7 > This is an immediate addressing mode. So, EA = 2000

c) Store 95(R1,R2),R5 - This is a variation of indexed addressing mode, in which contents of 2

registers are added with the offset or index to generate EA. So,
95+R1+R2=95+2900+3300=6255.

d) Add (R1)+,R5 > This is Autoincrement mode. Contents of R1 are the EA so, 2900 is the EA.
e) Subtract -(R2),R5 = This is Auto decrement mode. Here, R2 is subtracted by 4 bytes
(assuming 32-bt processor) to generate the EA, so, EA= 3300-4=3296.

image1.png

